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a  b  s  t  r  a  c  t

For  rice  (Oryza  sativa  L.),  simulation  models  like  ORYZA2000  and CERES-Rice  have  been  used  to explore
adaptation  options  to climate  change  and  weather-related  stresses  (drought,  heat).  Output  of  these  mod-
els is very  sensitive  to accurate  modelling  of  crop  development,  i.e. phenology.  What  has  to  date  received
little  attention  in phenology  calibration  is the  temperature  range  within  which  phenological  models  are
accurate.  Particularly  the  possible  correlation  between  temperature  and  phenology  prediction  error  has
received  little  attention,  although  there  are  indications  that  such  correlation  exists,  in  particular  in the
study by  Zhang  et  al. (2008).  The  implication  of such  correlation  is  that  a  phenology  model  that  is accu-
rate  within  the  calibration  temperature  range  can  be less  accurate  at  higher  temperatures  where  it can
systematically  overestimate  or underestimate  the  duration  of  the  phase  from  emergence  to flowering.
We  have  developed  a new  rice  phenology  calibration  program  that  is consistent  with  ORYZA2000  con-
cepts  and  coding.  The  existing  calibration  program  DRATES  of  ORYZA2000  requires  an  assumption  of
default  cardinal  temperatures  (8,  30 and  42 ◦C)  and  then  calculates  cultivar  specific  temperature  sums
and development  rates.  Our  new  program  estimates  all  phenological  parameters  simultaneously,  includ-
ing the  cardinal  temperatures.  Applied  to  nine  large  datasets  from  around  the  world  we  show that  the
use of  default  cardinal  temperatures  can  lead  to correlation  between  temperature  and  phenology  pre-
diction  error  and temperature  and  RMSE  values  in  the  order  of  4–18  days  for the  period  from  emergence
to  flowering.  Our  new  program  avoids  such  correlation  and  reduces  phenology  prediction  errors  to 3–7
days (RMSE).  Our  results  show  that  the  often  made  assumption  of  a rapid  decrease  in development  rate
above  the  optimal  temperature  can  lead  to poorer  predictions  and  systematic  errors.  We therefore  cau-
tion  against  using  default  phenological  parameters  for studies  where  temperatures  may  fall  outside  the
range  for  which  the  phenological  models  have  been  calibrated.  In  particular,  this  applies  to climate  change
studies,  were  this  could  lead  to highly  erroneous  conclusions.  More  phenological  research  with  average
growing  season  temperatures  above  the optimum,  in  the  range  of 32–40 ◦C,  is  needed  to  establish  which
phenological  model  best  describes  phenology  in this  temperature  range.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The duration of the period from emergence to flowering and
flowering to maturity plays an important role in yield formation of
crops, including rice. A longer cycle potentially allows for higher
yields, but can also increase exposure to stress and hence increase
the risk of lower yields in certain environments (Dingkuhn, 1995;
Matthews et al., 1997; Saseendran et al., 1998). Climate change
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bears risks as well as opportunities for rice producers. For instance,
temperature rises may  enable regions that are currently too cold
to shift from a single to a double rice crop (Matthews et al., 1997).
Abiotic stresses such as drought, heat and cold can be avoided by
choosing appropriate sowing dates and cultivars with the desir-
able duration of different development phases (Ekanayake et al.,
1989; Matsui et al., 1997; Fukai et al., 1999; Saini and Westgate,
1999; Jagadish et al., 2007). Adaptation options to biotic and abi-
otic stresses, climate change and climate variability can be explored
with crop simulation models. ORYZA2000 (Bouman et al., 2001;
Bouman and Van Laar, 2006) and CERES-Rice (Alocija and Ritchie,
1988; Jones et al., 2003) are the most commonly used rice models
and are quite similar in terms of processes included. Here we will
focus on the ORYZA2000 model.

0168-1923/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.agrformet.2011.06.012
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In ORYZA2000 many parameters are development stage depen-
dent: assimilate partitioning to organs, senescence of leaves,
specific leaf area, the light extinction coefficient and more. Other
processes do not depend directly on development stage, but
are only active during specific development stages. For instance,
spikelet sterility can only occur in the period from panicle ini-
tiation to flowering. Reduction of leaf expansion rate in case of
drought stress (resulting in extra root growth) occurs only during
the vegetative growth phase. Translocation of N from root, stem and
leaves to storage organ occurs only in the period from flowering to
maturity. Similar dependencies of crop physiological processes on
development stage are found in many other models. It is there-
fore surprising that little attention has so far been given to better
phenology calibration, given the importance of phenological pro-
cesses for the overall performance of the models (Aggarwal and
Mall, 2002; Confalonieri et al., 2010).

In previous, phenology-specific research scientists have devel-
oped and used their own calibration programs that simultaneously
calibrate all parameters of their phenological models (Vergara and
Chang, 1985; Summerfield et al., 1991, 1992; Collinson et al., 1992;
Gao et al., 1992; Dingkuhn et al., 1995; Dingkuhn and Miezan, 1995;
Yin, 1996; Yin et al., 1997b,c; Fukai, 1999). The phenological param-
eters estimated with these calibration programs cannot be directly
fed into models like ORYZA2000 and CERES-Rice, due to conceptual
and coding differences between the programs and existing phenol-
ogy subroutines in ORYZA2000/CERES. To resolve this, tailor made
calibration programs have been developed: DRATES and PARAM
for ORYZA2000 and GENCALC (Hunt et al., 1993) for DSSAT models
such as CERES-Rice. Apart from the conceptual and coding differ-
ences with existing work specifically on phenology, the number
of parameters estimated differs. The tailor made programs mostly
assume default values for most of the phenological parameters. In
DRATES/ORYZA the default base, optimum and maximum temper-
ature are 8, 30 and 42 ◦C. In CERES-Rice, most researchers use per
default a base temperature of 9 ◦C and optimum temperature of
33 ◦C (e.g., Saseendran et al., 1998; Mall and Aggarwal, 2002; Yao
et al., 2007). Although the use of these default values makes the
task of calibration much simpler (only one parameter value needs
to be estimated, namely the temperature sum), we will show that
this often results in highly erroneous results.

The most extensive information on the accuracy of the ORYZA
phenology routines is found in Matthews et al. (1995) and Mall
and Aggarwal (2002).  Both concluded that with the existing model
phenology could be accurately simulated. Horie et al. (1995b) sug-
gested that ORYZA’s phenological subroutine did not work well, but
provided no further details. It remains unclear if the problem lies
in the model structure or in the parameterisation. Recent papers in
which the ORYZA2000 model is used indicate no reason for con-
cern, but they mostly fail to document the accuracy of phenology
estimates and often lack a detailed description of data and methods
used to calibrate phenology. Some provide no information at all on
the phenology calibration (e.g., Sheehy et al., 2006; Krishnan et al.,
2007), others explicitly avoid the topic by separately calibrating
phenology for each site (e.g., Bouman and Van Laar, 2006; Boling
et al., 2010). This is a feasible work-around and can be justified
when the focus of a study is on something else than understand-
ing phenology. But we are faced with a large knowledge gap about
the accuracy of the phenological subroutine and parameters when
applied in other sites (Sinclair and Seligman, 2000).

Some researchers have tried to separate random from system-
atic error, whereby systematic errors are errors correlated with
an underlying variable. Correlations between phenology error and
observed duration have been investigated more thoroughly in
wheat (Xue et al., 2004) but not in rice. Plots of observed versus
simulated duration of emergence to flowering in Mall and Aggarwal
(2002) and Yao et al. (2007) suggest that such correlation also

occurs in rice. We found only one study that looked into correlation
of phenological error with temperature. Zhang et al. (2008) showed
that phenological errors increased when temperature increased. It
is possible that a phenological model yields accurate unbiased pre-
dictions within the range of experiments and biased predictions
outside this range (higher and lower temperatures). Surprisingly
though, this correlation between temperature and phenological
error has never been systematically investigated.

The studies cited above raise four questions:

1. Is correlation between temperature and phenological error as
reported by Zhang et al. (2008) an exception or is this phe-
nomenon also evident in other datasets?

2. How can we  quantify correlation between temperature and phe-
nological error?

3. Is correlation between temperature and phenological error
caused by using the wrong phenological (temperature or day
length) response model?

4. Is correlation between temperature and phenological error
caused by using the wrong phenological parameter set?

The objectives of this paper are to: (1) clearly explain how rice
phenology can be calibrated, (2) present a new program for rice
phenology calibration that can be directly linked to the ORYZA2000
model and (3) use this improved program to answer the four ques-
tions raised above.

2. Materials and methods

First we  discuss how (rice) phenology is normally modelled
(Section 2.1), then we  present the calibration program (Section 2.2)
and finally we describe the datasets used for answering the four
questions raised above (Section 2.3).

2.1. Modelling rice phenology

Development of rice depends most strongly on temperature and
in some cultivars also on day length. Water and nutrient stress can
affect development. They can delay or accelerate development rel-
ative to the non-limiting case. Their effect cannot be accurately
simulated without accurate simulation of the non-limiting case.
Here we will limit ourselves to the non-limiting case.

2.1.1. Temperature response functions
To simulate phenology it is assumed that there is a cultivar

specific temperature sum, or thermal time, needed to complete
a certain development stage. This temperature sum can be made
day length dependent, which we have addressed in the subsequent
section (Section 2.1.2). The temperature response function deter-
mines how temperature sum is calculated. The simplest (Blackman)
equation is:

TIt = max(0,  min(Tt − TBD, TOD − TBD)) (1a)

where TIt (◦C) is the increment in thermal time over time unit t, Tt is
the temperature during t, TBD is the base temperature and TOD the
optimal temperature. In this model there is no development below
TBD, TIt increases linearly with Tt up to the optimal temperature
TOD and then remains at its maximum TOD − TBD. Temperature
sum for development phase p (TSUMp) is then the sum of daily TIt
values during this phase (in degree days, ◦Cd).

Development rates are calculated as the inverse of TSUMp.
Development stages are ranked on a numerical scale. In ORYZA2000
the scale runs from 0 at emergence, to 0.4 (start of photoperiod
sensitive phase), 0.65 (panicle initiation), 1.0 (flowering) and 2.0
(maturity). If the temperature sum needed to complete the phase
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Fig. 1. Temperature response functions (function name: TBD, TOD, TMD, TSEN). As
long as data are on the left side of the response function, say below 32 ◦C, the same
shape can be obtained with any of the response functions, with very different values
for  TBD (beta with TBD = 8 ◦C or −100 ◦C, bilinear or Blackman with TBD = 13 ◦C) and
with very different values for TMD  (beta with TMD  = 42 ◦C or 269 ◦C, bilinear with
TMD  = 157 ◦C or Blackman with TMD  = 999 ◦C).

from panicle initiation to flowering is TSUMPIFL, then the develop-
ment rate for this phase is calculated as (1.0–0.65)/TSUMPIFL.

The fact that the maximum thermal time accumulation in Eq.
(1a) is TOD − TBD makes comparisons among response functions of
different parameter sets (TBD, TOD) complicated and also compli-
cates comparisons of temperature sums calculated with different
underlying TBD and TOD values. Eq. (1a) can be normalised to Eq.
(1b) such that the minimum thermal time increment is always 0 at
TBD and maximum thermal time increment is always 1 at TOD:

TIt = max
(

0, min
(

1,
Tt − TBD

TOD − TBD

))
(1b)

TIt values can be calculated at any time step t, but are often
conveniently aggregated to daily values in the range of 0–1. Let
us assume TBD = 8, TOD = 30, T1 = 10 and T2 = 40 ◦C. This results in
TI1 = 2/22 = 0.09 and TI2 = 1. Let us further assume that a develop-
ment phase is completed within these 2 days. Now the duration of
this phase under optimal temperatures is OPTDUR = 0.09 + 1 = 1.09
days and development rates are calculated similar as above but
with OPTDUR instead of TSUM.

The Blackman functions assume development rates remain at
their maximum above TOD. In other response functions, including
the one implemented in ORYZA2000, development slows linearly
once an optimum value has been exceeded, coming to a complete
standstill at maximum temperature TMD  (Figs. 1 and 3c). The bilin-
ear function is defined as:

TIt = max(0,  Tt − TBD) for Tt < TOD (2a)

TIt = max
(

0, (TMD − Tt)
TOD − TBD
TMD  − TOD

)
for Tt ≥ TOD (2b)

This bilinear model can also be normalised:

TIt = max
(

0,
Tt − TBD

TOD − TBD

)
for Tt < TOD (2c)

TIt = max
(

0,
TMD  − Tt

TMD  − TOD

)
for Tt ≥ TOD (2d)

The Blackman response function can be seen as a special case
of the bilinear model in which TMD  is set to infinity. Type 1 (Eqs.
(1a) and (1b)) and type 2 (Eqs. (2a) and (2b)) response functions
are most commonly used: CERES-Rice uses 1a (with some modi-
fication for soil temperature during early growth); SIMRIW (Horie
et al., 1995a)  is a variant of type 1 with a logistic instead of linear
response; ORYZA2000 uses 2a/b (Bouman and Van Laar, 2006); the
Rice Clock Model (Gao et al., 1992) and the beta model (Yin, 1996;

Yin et al., 1995, 1997a,b,c)  use bell shaped versions of the type 2
bilinear model. Among many temperature response models, the
beta function has proven to be slightly yet consistently more accu-
rate than other response models (Yin et al., 1997b), also in other
crops (e.g., Ceglar et al., 2011). The normalised beta model is:

TIt =
{(

Tt − TBD
TOD − TBD

)  (
TMD − Tt

TMD  − TOD

)((TMD−TOD)/TOD−TBD)
}TSEN

(3)

With a parameter TSEN that determines the curvature of the
bell-shape, see Fig. 1.

2.1.2. Rice, day length and transplanting
The descriptions in previous section are generally applicable for

any crop. Now let us look in more detail into rice phenology. In
ORYZA2000 the following four phases are distinguished:

1. BVP is basic vegetative phase,  temperature dependent, from
emergence (E) to end of BVP (=SPSP, start of PSP), development
stage (DVS) 0–0.4, with development rate DVRJ.

2. PSP is photoperiod sensitive phase, temperature and day length
dependent, from SPSP (DVS 0.4) to Panicle Initiation (PI, DVS
0.65), with development rate DVRI.

3. PPP is post PSP phase, temperature dependent, from panicle initi-
ation (PI, DVS 0.65) to flowering (FL, DVS 1.0), with development
rate DVRP

4. GFP is grain filling phase, temperature dependent, from flowering
(FL, DVS 1.0) to maturity (M,  DVS 2.0), with development rate
DVRR.

For any day in a simulation, the development stage on a continu-
ous scale from 0 to 2 is simulated, based on temperature, day length
and the abovementioned development rates. In case of cultivars
that are not photoperiod sensitive, BVP and PSP can be treated as
one phase, although there is indication that cardinal temperatures
(TOD,TSEN) during BVP and PPP are different from those during PSP
(Yin et al., 1997c), also for cultivars such as ShanYou 63 that are only
mildly photoperiod sensitive. In case of photoperiod sensitivity, the
start of PSP (parameter SPSP) needs to be derived indirectly because
there are no means of direct measurement in the field (Vergara and
Chang, 1985; Yin, 1996). The simplest (linear) day length model is:

EFP = 1 for DL < MOPP and in phases other than PSP (4a)

EFP = max(0,  PPSE(DL − MOPP)) for DL > MOPP during PSP (4b)

where EFP is the effect of day length (range 0–1), PPSE the pho-
toperiod sensitivity parameter and MOPP the maximum optimum
photoperiod. Development is delayed if during PSP day length DL is
larger than MOPP. During the PSP, thermal increment (TIt as defined
above) is multiplied with EFP. An additive model or a model tak-
ing the minimum of EFP and (normalised) daily TIt is also possible,
but uncommon. Whether or not the additive or the multiplica-
tive model (EFP × TIt) results in better simulations remains to be
tested. EFP is calculated on a daily time step and can be multiplied
with TIt regardless of the step size t. The interaction between tem-
perature effect and photoperiod effect can hamper calibration of
temperature and photoperiod parameters. Let us define the daily
photo-thermal time increment on a given day t as PTIt = EFP × TIt.
This approach is prone to compensating errors: if EFP is underes-
timated due to a low estimate of PPSE, this can be compensated
by a higher TIt value. This can result in multiple parameter sets of
TBD, TOD, TMD, MOPP, PPSE that all simulate the same PTI val-
ues. Because of this ambiguity, it is impossible to tell, which of
these parameters reflects the true (physiological) parameter val-
ues of a cultivar. Interaction can be excluded in greenhouse/climate
chamber experiments (Yin, 1996) with same temperature at dif-
ferent day lengths, or same day length at different temperatures.
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In field experiments such interactions cannot be avoided. Further,
photoperiod and temperature are continuously changing, further
complicating the analyses of field experiments. Hence, much more
experimental data are needed to unravel the effects of temperature
and day length in the field (Dingkuhn and Miezan, 1995; Dingkuhn
et al., 1995; Horie et al., 1995a).

Instead of the linear photoperiod response functions (Eqs.
(4a) and (4b)) researchers have also used logistic functions (Gao
et al., 1992; Horie et al., 1995a; Yin, 1996; Yin et al., 1997a,b,c).
Proper calibration of the logistic response requires one treatment
with day length close to MOPP and at least two treatments with
DL > MOPP. In the greenhouse calibration of a logistic response
function requires at least 3 photoperiods: two close to MOPP and
one much larger than MOPP. For example Yin et al. (1997a,b,c)
used treatments of 10, 12.5 and 14 h at a constant tempera-
ture.

Rice can be direct seeded or transplanted. Transplanting is nor-
mally at around 15–35 days after emergence. In the ORYZA2000
model, it is assumed that upon transplanting development is halted
for some time after transplanting. The duration of this period of no
development is calculated as:

TSHCKD = SHCKD × TSTR (5)

where SHCKD is the transplanting shock parameter, TSTR the
temperature sum (sum of TIt from emergence to transplant-
ing) at the day of transplanting and TSHCKD the time in degree
days (or unitless in case of a normalised model) during which
development is halted after transplanting. The default value for
SHCKD in ORYZA2000 is 0.4. Consider an experiment in which
rice is direct seeded and the temperature sum from emergence
to flowering is calculated as TSUMFL0. Consider further a sec-
ond experiment in which rice is transplanted at day a, for this
second experiment the temperature sum at flowering is calcu-
lated as TSUMFLa = TSUMFL0 + TSHCKDa. Then SHCKD is the only
unknown in the equation TSUMFLa = TSUMFL0 + SHCKD × TSTRa,
thus SHCKD = (TSUMFLa − TSUMFL0)/TSTRa. In case of transplant-
ing at two different dates a and b, SHCKD can be calculated as:

SHCKD = TSUMFLb − TSUMFLa

TSTRb − TSTRa
(6)

As in the case of photoperiod sensitivity, interaction with other
parameters hampers estimation of SHCKD. A too low value for
SHCKD can be compensated by a too high value for TSTR, yield-
ing the same TSHCKD in Eq. (5).  A too high value for TSTR can be
obtained by assuming a too high value TBD or with an appropriately
chosen set of TBD, TOD and TMD. Thus an error in parameter SHCKD
can cancel out an error in TBD TOD and/or TMD. There can exist
multiple parameter sets TBD, TOD, TMD, SHCKD that give identical
simulations of phenology and it may  be impossible to tell which of
these parameters reflects the true (physiological) parameter values
of a cultivar. In addition, it has been suggested that the true value
of SHCKD might vary considerably, depending on handling of the
young plants during transplanting (T. Lafarge, IRRI, personal com-
munication. To our best knowledge, there are no published studies
explicitly targeted at estimating SHCKD.

In summary, we can define the number and type of parameters
of a rice phenological model as follows:

• For a photo period insensitive cultivar: TBD, TOD, TSUMBVP+PSP,
TSUMPPP, TSUMGFP.

• For a photo period sensitive cultivar: TBD, TOD, SPSP, MOPP, EFP,
TSUMBVP, TSUMPSP, TSUMPPP, TSUMGFP.

• In case of transplanting: as above +SHCKD.

The set of parameters becomes larger when TBD and TOD are
different for day and night (Yin et al., 1997b,c), when for different

phases different TBD and TOD parameters are assumed (Yin et al.,
1997a; Dingkuhn, 1995) and when using the bilinear (+TMD) or
beta (+TSEN) response model. Below, we  will describe conceptually
how these parameters can be estimated, in Section 2.2 we  describe
our phenology calibration program.

2.1.3. Calibration, random and systematic error
The first step to calibrate the phenology of a given cultivar is

to define in drawings or photographs how the different develop-
ment stages can be recognised (for example see the protocol for rice
of the international rice research institute IRRI,2 Lancashire et al.,
1991 or the BBCH protocol by Meier, 2001). Next, the cultivar is
grown at different temperatures and/or day length, and the dates
of emergence, panicle initiation, flowering and maturity are noted.
Ideally experiments will include a wide range of environmental
conditions, which can be obtained through sowing at different sites
or sowing at the same site on monthly intervals. Once tempera-
ture, photoperiod and transplanting shock parameters are fixed,
temperature sum (TSUM, ◦Cd) or shortest possible duration (OPT-
DUR, days) can be calculated. The resulting TSUM or OPTDUR will
be different depending on assumptions made on the other parame-
ter values. Ideally all parameters are estimated simultaneously, but
in practice very often one or more of the parameters is assumed
constant, an assumption that simplifies the estimation of the other
parameters. Estimation of the TSUM or OPTDUR parameter is par-
ticularly easy when all but one parameters are assumed constant.
This is indeed the common approach for model calibration. Com-
monly assumed parameter values are: TBD = 9 ◦C and TOD = 33 ◦C
(in CERES-Rice) and 8, 30, 42 ◦C (in ORYZA2000). In the Beta model,
Yin et al. (1996) per default assumed TBD = 8 ◦C and TMD = 42 ◦C,
after which TOD, TSEN and OPTDUR were simultaneously esti-
mated. Yin (1996) found TOD values ranging from 25 to 30 ◦C, TSEN
equal to 1 during BVP and PPP, TSEN ranging from 0.6 to 5.6 during
PSP and OPTDUR in the range 35–73 days. Gao et al. (1992) sug-
gests 10–28–40 ◦C (TBD–TOD–TMD) for Japonica and 12–30–40 ◦C
for Indica and, plus power function parameters that produce a bell
shaped response curve. Dingkuhn and Miezan report base temper-
atures in the range of 10–15 ◦C, and TOD in the range of 23–31 ◦C,
based on water temperatures.

The average TSUM (or OPTDUR) from a set of temperature/day
length treatments i = 1, n is used to simulate the duration of phases
in days. Model accuracy can be calculated as the coefficient of vari-
ation in TSUM or OPTDUR. After simulating the duration of a phase
the accuracy can be calculated as the error (Eip) for each treatment
i and from that root mean square error (RMSEp):

Eip = OBSDURip − SIMDURip (7)

RMSEp =
√

1
n − 1

∑
i

E2
ip (8)

where OBSDURip is the observed duration in days of phase p for
treatment i, SIMDURip is the simulated duration and n the number
of treatments. RMSEp in Eq. (8) combines systematic and random
error in one metric. A novelty in this study is that we unambigu-
ously separate random from systematic variations:

TSUMip = ap + bp × TMip (9)

Eip = ap + bp × TMip (10)

where TMip is the average temperature during phase p in
treatment i, parameter ap is the random error and bp × TMip the
systematic error. Parameters ap and bp are calculated using linear

2 www.knowledgebank.irri.org/extension/index.php/growthstages.
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regression. Slope parameter bp measures how much the phenology
error in days increases with a 1 ◦C increase in TMip. The calcula-
tion is repeated for every parameter set, thus we  can search for the
parameter set with the lowest ap, bp and RMSEp (and ideally with
bp equal zero). Separation of random from the systematic error has
been done previously in wheat (Xue et al., 2004) but not in rice. Xue
et al. (2004) tested for systematic error as in Eq. (11):

MSEs = 1
n

√∑
i

((ap + bpOBSDURip) − OBSDURip)
2

(11)

where parameters ap and bp are derived from linear regression
as in Eq. (12):

SIMDURip = ap + bpOBSDURip (12)

Thus Xue et al. (2004) tested if phenological error of phase p is
correlated with observed duration of p. Plots of simulated versus
observed duration in Mall and Aggarwal (2002) and in Yao et al.
(2007) suggest that such correlation can also occur in rice. Xue’s
approach does not identify the source of systematic error. Where
the phenological model is driven by temperature, it seems logi-
cal to directly go to the plausible cause of bias, as we  do in Eq.
(10).

We  have shown in Section 2.1.2 that the temperature and pho-
toperiod response models are non-linear and that an error in the
estimated value of one parameter can be compensated by an error
in another parameter. Due to these non-linearities and interactions
there can be local optima. If an optimisation program is used to
estimate parameters (by minimising RMSE) we must ensure that
it converges to a global (and not a local) optimum. We  also need
to establish whether multiple and very different parameter sets
exist that produce identical simulations of duration of development
stages. If in all simulations a single set of default parameters yields
near optimal RMSE values then that can be a valid reason to retain
the default set. Reduction of the number of parameters to be esti-
mated at the expense of a small loss of accuracy may  be very well
acceptable. The phenology model that we have developed (Section
2.2) allows to investigate not only the optimal solutions but also
the near optimal solutions, so that users can assess if there is clear
convergence to a unique parameter set. Failure to converge gen-
erally indicates that more experimental data across a wider set of
environmental conditions are needed.

2.1.4. What temperature, what day length
Temperature and day length playing an essential role in pheno-

logical development. Hence, it is important to consider how these
two variables are defined and measured. Normally we  use air tem-
perature at 2 meters height in an open field, measured at a nearby
meteorological station. In cool environments standing water tem-
perature can be consistently higher than air temperature, with
beneficial effects on yield (Confalonieri et al., 2005; Shimono et al.,
2007b). In hot environments water temperature can have a (pos-
itive) cooling effect for crop production (Dingkuhn, 1995; Lobell
and Bonfils, 2008). Studies have shown that accuracy of phenol-
ogy modelling can be improved by inclusion of water temperatures
in the calculations (Collinson et al., 1995; Dingkuhn et al., 1995;
Shimono et al., 2007a).  This leads to calibrated TBD, TOD and TMD
values that differ from those calibrated from air temperature. If
water temperature is systematically lower than air temperature
then optimisation of parameters will show that TBDwater < TBDair.
Parameter estimates are therefore contingent on the type of tem-
perature used as input. Water temperature is rarely measured.
Models for simulating water temperature exist (Dingkuhn et al.,
1995; Confalonieri et al., 2005; Kuwagata et al., 2008) but have
to our knowledge not yet been validated outside the environment
in which they were calibrated. They may  require additional data

(such as temperature of inflowing irrigation water) which are gen-
erally also not known. A water temperature model also challenges
the assumption normally made that growth and development are
independent. Air temperature3 is not affected by growth of the
plant and so we  can assume that growth does not affect devel-
opment. Water temperature depends on leaf area index (LAI) thus
on growth. To calibrate water temperature driven phenology, addi-
tional measurements of water temperature and LAI are needed. A
model that poorly simulates LAI will also poorly simulate water
temperature and the resulting water temperature driven phenol-
ogy. The theoretical accuracy gained by using water temperature
may  well be lost again due to uncertainties in the estimation of
water temperature. Therefore, we will in this study restrict discus-
sion to air temperature alone.

Another issue is whether daily average temperature should be
used or hourly temperature. Daily mean temperature (TM) and
hourly temperature (TH) are both calculated from daily minimum
and maximum temperature (TMIN and TMAX), given that hourly
measurements are rarely available. In ORYZA2000 the following
equations are used:

TM = 0.5 × (TMAX + TMIN) (13)

TH = TM + 0.5 × (TMAX − TMIN) × cos(0.2618 × (h − 14)) (14)

where h is hour and it is assumed that peak temperature TMAX is
reached at 14.00 h. Both equations implicitly assume a day length
of 12 h, which is valid for only 2 days of the year and with errors
disproportionally increasing with the spatial distance from the
equator and temporal distance for the equinoxes. At higher lati-
tudes these equations will underestimate daily mean temperature
during summer (when daytime is longer than 12 h) and overesti-
mate daily mean temperature during winter (when night time is
longer than 12 h). Slightly more complex models can take this into
account (Parton and Logan, 1981; Goudriaan and van Laar, 1994;
Ephrath et al., 1996) and are implemented in some models (APSIM;
Keating et al., 2003) but require additional parameters that need to
be calibrated based on measured hourly temperatures. With tem-
perature response functions as in Eqs. (1)–(3), the daily thermal
time increment (TIt) can be different depending on whether it is
calculated with TM or TH. Few researchers have quantified the con-
sequences of using daily average rather than hourly temperatures.
Purcell (2003) has shown that differences are very small, except
when temperature is for a long time close to TOD. Rice is often
grown at temperatures close to TOD so we decided to work with
hourly temperatures as already implemented in ORYZA2000. The
use of hourly temperatures and determination of the duration of
daytime and night time also becomes relevant when, as Yin (1996),
Yin et al. (1997a,b,c) shows, day/night temperature parameter val-
ues differ markedly.

For day length, an additional concern is the exact defini-
tion of threshold light intensities. When the sun is just below
the horizon there is still some light, declining to zero as the
sun drops further below the horizon. Sun angles of 0◦ to −6◦

are found in the literature, resulting in 0 to 1.5 h of twilight,
depending also on day of the year and latitude. Strictly speak-
ing in calibrating phenology from field experiments we must
also estimate the sun angle at which twilight still affects day
length. Yin et al. (1997b) have calibrated phenology under dif-
ferent sun angles and found only small differences in terms of
accuracy. This suggests that for prediction purposes, consistency
on methods used is more important than the exact value of sun
angle. Consider a set of phenological parameters calibrated with

3 Here we mean air temperature at 2 m height in the open field; of course the air
temperature inside the canopy does depend on the LAI.
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a sun angle of −2◦. Now feed the MOPP, PPSE and other cali-
brated parameters into a model that uses a sun angle of −6◦,
i.e. with systematically longer days. In that case, the effect of
photoperiod (EFP) would be systematically overestimated. This
example shows the importance of having transparency and con-
sistency in modelling approaches and phenological calibration
programs.

Day length can easily be calculated from latitude and day of year
(with an assumption on twilight sun angle), the equations are doc-
umented, for instance, in Parton and Logan (1981) and Goudriaan
and van Laar (1994) and can be found in subroutine SASTRO of
the ORYZA2000 model (which can be downloaded from the IRRI
website). In the current implementation of ORYZA2000 a simpler
approach is followed: effective day length is calculated as the day
length at a sun angle of 0◦ plus 0.9 h. This corresponds roughly with
a sun angle of −6◦.

2.2. Rice phenology calibration program

Design criteria for the new calibration program were:

1. Compatibility with existing ORYZA2000 concepts and code;
2. Inclusion of temperature sensitivity, photoperiod sensitivity and

transplanting shock as stated above;
3. Inclusion of the Blackman (Eq. (1a) and (1b)), bilinear (Eqs. (2a),

(2b), (2c) and (2d)), and beta (Eq. (3)) response functions, both for
temperature and day length. For the beta response function we
use the model presented in Yin et al. (1997b), with different TOD
and TSEN values during day and night, with one set of TOD,TSEN
values for the BVP and PPP phase and a different set for the PSP
phase;

4. Ability to treat the BVP and PSP as one phase in case of non-
photoperiod sensitive cultivars and as separate phases in case of
photoperiod sensitive cultivars;

5. In the photoperiod sensitive mode also statistically infer the
thermal time SPSP at which BVP ends and PSP starts;

6. Use normalised TIt to allow for easy comparison among tem-
perature response functions and within the same response
function across different parameter sets. Note that the exist-
ing ORYZA2000 model uses a temperature sum concept. After a
small change in the subroutine SUBDD of ORYZA2000 our devel-
opment rates can be fed directly into ORYZA2000. Development
stage dependent parameters can be estimated with the exist-
ing DRATES program (also with modified SUBDD) after having
calibrated phenological parameters;

7. Calculation of both RMSEp and slope parameter bp as in Eqs. (8)
and (10);

8. Ability for users to assess possible convergence to a unique
optimal parameter set. This is achieved by looping through all
possible (user defined) parameter sets and calculating summary
statistics for each of these sets;

9. Ability to mimic  water temperature in the simplest possible way
(for demonstration purposes only), namely by assuming that
it is consistently TM CORR ◦C degrees higher or lower than air
temperature. We  do not know water or canopy temperature
and have no intent of estimating it. The sole purpose of this
TM CORR approach is to illustrate the effect of consistently lower
(or higher) water temperature on parameter estimates.

The program needs as input a text file with dates of emer-
gence, transplanting, panicle initiation, flowering and maturity.
This phenology input file can contain multiple treatments, each in
a separate row. The program needs as input annual weather files
(structured in the same way as in ORYZA2000 weather files) with
latitude (for calculating day length), station number, day numbers
and for each day minimum and maximum temperature. The user

selects the response function to be calibrated and specifies min-
imum value, maximum value and step size for each parameter.
The Blackman response function (Eqs. (1a) and (1b)) is practically
obtained by selecting the bilinear model and setting in the TMD  to
a very high value, in our analyses 999 ◦C. For direct seeded rice
the parameter SHCKD (Eq. (5))  is set to zero. In simulations in
which no photo-period sensitivity is assumed the value of PPSE
(Eq. (4b)) is set equal to zero and just one level for MOPP is
chosen. In the current implementation, the same TBD, TOD and
TMD  values (and TSEN if the beta function is used) are assumed
for each developmental phase. This is the simplest possible
approach, whether this simplification is justified we will see in the
results.

The program assumes that the duration of each phase p under
optimal temperature (OPTDURp) is a constant parameter. It gen-
erates sets of parameters (TBD, TOD, etc.) and for each set it
searches for the value of OPTDURp such that the average error
of duration of the phases from emergence to PI, emergence
to flowering and flowering to maturity is less than 1 day (i.e.
1
n

∑
i(SIMDURip − OBSDURip) < 1, where i = 1, n is the number of

treatments). This set-up corresponds to the standard approach
to averaging of TSUMip or averaging of development rates. This
set-up does not exclude parameter sets with slope parameter bp

(Eq. (10)) differing strongly from 0. Thus, we  can assess possible
bias caused by the assumption of default ORYZA2000 parame-
ters. Looping through all possible parameters is computationally
demanding (can take a several hours) depending on the number
of parameter sets evaluated and the response function chosen. It
does however give the user maximum freedom in later select-
ing his or her ideal parameter set and it allows the user to
check if there is clear convergence to a unique optimal parameter
set and if there is interdependency between model parame-
ters.

The program generates two  output files. One listing for each
parameter set and for each treatment the simulated and observed
duration of the development phases. The second (summary) output
file lists for each parameter set the RMSEp (Eq. (8))  and param-
eter bp (Eq. (10)). In the results section we will report these as
“Error × TMEFL” for slope bp during the phase from emergence to
flowering, RMSE EFL for the root mean square error of this phase.
Likewise, “Error × TMFLM” and RMSE FLM are for the phase from
flowering to maturity. The summary file can be sorted by RMSE EFL
to obtain the parameter set with the highest accuracy for the phase
from emergence to flowering or sorted by RMSE FLM to obtain the
parameter set with the highest accuracy for the phase from flow-
ering to maturity. By plotting RMSE EFL (y-axis) against parameter
TBD (x-axis) we  can see if there is clear convergence towards an
optimal value of TBD. The same plots can also be made for the other
parameters.

2.3. Data

The program was applied to large datasets from a wide range of
environments. Table 1 lists all data used. Table 2 lists the range of
observed durations of development phases of the nine cultivars. In
all experiments, the IRRI protocol for identification of phenologi-
cal events was  used. The Chinese and Senegalese datasets contained
records of emergence day (EMD), date of transplanting, date of pan-
icle initiation (PI), date of flowering (FL) and date of maturity (M).
For the Brazilian datasets aerobic rice was  used that was not trans-
planted, emergence day and flowering day were recorded on all
sites, panicle initiation and maturity were only recorded in two
treatments. For each dataset weather data were obtained from a
nearby official weather station.
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Table  1
Experiments.

Cultivar Location Time Average temperature (◦C) during
period from emergence to flowering

Reference

Qiuguang (QG) China, Tonghua station
(41.67N, 125.75E)

1985–2005, sown 1× per
year

17.8–20.8; temperature rise of 1.5 ◦C
during the 21 years

Zhang et al. (2008)

Shanyou-63 (SY) China, Zhongxiang station
(112.3N, 31.1E)

’89–’00, sown 1× per year 24.6–27.0 Zhang et al. (2010)

China, Gushi station
(115.4N, 32.1E)

’98, ’99, sown 1× per year 25.0–25.3

China, Liu’an station
(116.3N, 31.5E)

’95–’97, sown 1× per year 25.4–26.2

China, Hengyang station
(112.4N, 26.5E)

’96–’02, sown 1× per year 27.4–30.2

SY combined dataset 21 treatments 24.6–30.2

BRSPrimavera (Bra P) Brazil, Sto Antônio de Goiás
(−16.4N, −49.2E)

’04–’09, multiple sowings
per year

24.1–24.8 Heinemann et al.
(2009, 2011),
Lorenç oni et al.
(2010)

Brazil,  Sinop (−12.0N,
−55.6E)

’08–’09, sown 1× per year 24.9–25.5

Brazil, Vilenha (−12.73N,
−60.15E)

’08–’09, sown 1× per year 25.1

Brazil, Gurupi (−12.47N,
−49.18E)

’08–’09, sown 1× per year 27.0–27.6

Brazil, Teresina (−5.08N,
−42.8E)

’07–’10, sown 1× per year 26.1–28.5

Primavera combined
dataset

24 treatments 24.1–28.5

BRSMGCuringa (Bra C) Same locations as
Primavera

21 treatments 24.1–28.5 Heinemann et al.
(2009, 2011)

IR64  Senegal, Fanaye (16.53N,
−15.18E)

’05–’06, 15 sowing dates at
30 days interval; 1
treatment never reached
maturity

24.2–31.3 de Vries et al.
(2011)

Senegal, Ndiaye (16.18N,
−16.25E)

’05–’06, 15 sowing at 30
days interval

24.8–29.3

IR32370 Same locations as IR64 Same treatments as IR64 24.0–31.3 de Vries et al.
(2011)

ITA344 Same locations as IR64 Same treatments as IR64 24.5–31.4 de Vries et al.
(2011)

SAHEL Same locations as IR64 Same treatments as IR64 23.5–31.4 de Vries et al.
(2011)

WAS161 Same locations as IR64 Same treatments as IR64 24.2–31.3 de Vries et al.
(2011)

Total: 9 cvs 12 locations 232 treatments 17.8–31.4 ◦C

3. Results and discussion

The four questions raised in the introduction can be answered
as follows:

1. Correlation between temperature and phenological prediction
error as reported by Zhang et al. (2008) for cultivar Qiuguang
(QG) is not unusual. It was also found in the Chinese SY culti-
var and the five Senegal cultivars. However the direction was

different, positive correlation in QG, negative in SY and negative
in the five Senegalese cultivars. As a consequence of assuming
default ORYZA2000 parameters, duration of emergence to flow-
ering was underestimated in QG at high temperatures (Fig. 2).
For cultivars SY and the five Senegalese cultivars we found that
at high temperatures the default parameter set would overesti-
mate the duration of the phase of emergence to flowering. This
is illustrated in Fig. 3a–c for IR64 (the same pattern was  found in
the other cultivars). At low temperatures around 24 ◦C the error

Table 2
Observed duration of developmental phases.

Emergence to panicle
initiation (days)

Panicle initiation to
flowering (days)

Emergence to flowering
(days)

flowering to maturity
(days)

Qiuguang (QG) 69–87 18–33 94–115 35–44
Shanyou-63 (SY) 59–85 18–33 83–118 24–49
Primavera (Bra P) 63–94
Curinga (Bra C) 55–85
IR64 59–110 23–35 85–140 19–37
IR32370 54–107 23–40 78–135 23–48
ITA344  67–118 23–56 93–156 15–34
SAHEL 53–118 21–29 80–135 24–38
WAS161 59–111 21–31 84–142 16–37
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Fig. 2. Error in duration of emergence to flowering for cultivar Qiuguang, simulated
with default ORYZA2000 parameters and with parameters optimised such that there
is  no longer a trend with temperature. The sequence 8–30–42–0.4 means TBD = 8 ◦C,
TOD = 30 ◦C, TMD  = 42 ◦C and SHCKD = 0.4.

is caused by the fact that default TBD = 8 ◦C is too low, at high
temperatures (>30 ◦C) the error is caused by the fact that default
TMD  = 42 ◦C is too low.

2. Correlation between temperature and phenological error can
be quantified using Eqs. (8) and (10). We  demonstrate this in
Figs. 2 and 3a, b. The slope bp of Eq. (10) is shown in column
“Error × TMEFL” in Table 3. “Error × TMEFL” indicates how much
days the phenological error (emergence to flowering) increases
with a unity increase in TMEFL (mean temperature from emer-
gence to flowering). A value of zero for “Error × TMEFL” means
no correlation between error and temperature. A negative error
means that at high temperatures, simulated duration of this
phase is longer than observed duration (Fig. 3a). The cause of
this correlation can be identified from comparing the default
temperature response function with the optimised tempera-
ture response function (Fig. 3c). Apparently for IR64, the default
parameter set overestimates development rate at temperatures
below 30 ◦C and underestimates development rate at tempera-
tures above 30 ◦C.

3. Within our range of temperatures, correlation between temper-
ature and phenological error is not caused by using the wrong
phenological response model. With temperatures largely in the
left side part of the temperature response function, say 32 ◦C and
lower, almost the same shape response function can be obtained
with any response model, simply by properly tuning the param-
eters (see Fig. 1). Just slightly above the optimum the beta and
Blackman function will predict similar development (Fig. 1). Our
results, with average temperatures from emergence to flowering
in the range of 17.8–31.4 ◦C clearly indicated that the assump-
tion of a rapid decline in development rate above the optimum
(bilinear function) gives poor predictions. With the current range
of temperatures no meaningful difference in accuracy of the beta
and Blackman function could be found (Table 3). It is however
clear from Fig. 1 that with average temperatures from emergence
to flowering of around 34 ◦C and higher, the two  functions will
give very different results. With lack of data on the shape of
response functions at the very high temperatures, we  caution
against using untested models for climate change scenarios and
call for more field experiments at high temperatures.

4. Correlation between temperature and phenological error is in
many cases caused by using the wrong phenological parameter
set. In the Brazilian datasets the ORYZA2000 default values hap-
pened to be valid, but in the Chinese and Senegalese datasets
using the default values lead to bias. It is clear from our results is
that the sharp decrease in development rate from TOD = 30 ◦C to
TMD  = 42 ◦C in ORYZA2000 leads to overestimation of the dura-
tion of emergence to flowering. A simpler model with minimal

Fig. 3. (a) Observed and simulated duration of emergence to flowering for cultivar
IR64, simulated with default ORYZA2000 parameters. (b) Observed and simulated
duration of emergence to flowering for cultivar IR64, simulated with optimised
parameters. (c) Default and optimised temperature functions for IR64.

high temperature constraints results in a better fit (e.g. by setting
TMD to an extremely high value such as 999 ◦C, i.e. a Blackman
response function). For the Senegalese cultivars we found that,
relative to the Blackman curve, small further increase in accu-
racy could be obtained with a bilinear model and TMD values
somewhere in between 100 and 1000 ◦C (data not shown). In
the QG dataset the mean temperature in the period from emer-
gence to flowering was 17.8–20.8 ◦C (Table 1) thus the shape
of the response function above TOD (22–25 ◦C, Table 3) could
not be determined. In the QG dataset, the systematic error was
caused by default values of TBD and TOD being too high (Table 3),
resulting in development at lower temperatures being underes-
timated. However, the range of temperatures in the QG dataset
was  limited (Table 1, Fig. 2) questioning if this temperature range
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Table  3
Optimised parameter sets and default ORYZA2000 parameter set. To fit the table to this page photoperiod parameters are left out; in most cultivars adding PSP did not
improve results. The column “objective” indicates what was  minimized: RMSE EFL is the RMSE for the phase of emergence to flowering, RMSE FLM the RMSE for the phase
of  flowering to maturity. Error × TMEFL is the slope parameter bp in Eq. (10), which is ideally zero.

Cultivar Photoperiod
sensitivity

Objective Model TBD TOD TMD  SHCKD OPTDUR E. to flowering Fl. to maturity

EFL FLM Error × TMEFL RMSE Error × TMFLM RMSE

QG noPSP Default Bilinear 8 30 42 0.4 49 17 3.5 4.0 2.8 5.7
noPSP Error × TMEFL Bilinear 4 23 42 0.6 63 31 0.0 4.0 0.5 4.1
noPSP RMSE EFL Blackman 0 25 999 0.6 67 32 1.4 3.1 1.6 4.5
PSP RMSE EFL Blackman 2 22 999 0.4 41 34 0.7 2.6 1.4 3.4
noPSP RMSE EFL beta 62 24 1.1 3.6 0.3 4.6
noPSP RMSE FLM bilinear 2 19 42 0.8 61 32 −2.1 5.1 −0.8 2.0

SY  noPSP Default bilinear 8 30 42 0.4 67 23 −4.0 7.9 0.6 4.3
no  PSP RMSE EFL bilinear 12 32 42 −0.2 73 20 −0.3 5.0 1.1 6.3
PSP RMSE EFL Blackman 12 28 999 0.8 44 24 −0.4 3.7 −0.3 4.9
noPSP RMSE EFL beta 76 21 −0.2 4.5 0.2 7.4
no  PSP RMSE FLM bilinear 9 27 42 0.4 67 23 −5.1 9.0 −0.1 3.6

Bra P noPSP Default bilinear 8 30 42 0 55 31 −1.4 5.2 1.3 1.8
no  PSP RMSE EFL Blackman 9 32 999 0 51 28 0.1 4.5 2.0 2.7
PSP  RMSE EFL Blackman 6 28 999 0 59 34 −0.5 4.8 1.4 1.8
noPSP RMSE EFL beta 54 33 0.0 5.0 1.5 2.0

Bra  C noPSP Default bilinear 8 30 42 0 62 30 −1.1 5.3 1.3 2.0
no  PSP RMSE EFL bilinear 5 33 42 0 59 28 −0.4 4.9 1.7 2.4
PSP RMSE EFL Blackman 0 28 999 0 40 41 −0.1 4.4 0.9 1.4
noPSP RMSE EFL beta 56 24 0.1 4.8 1.3 2.0

IR64  noPSP Default bilinear 8 30 42 0.4 67 20 −5.9 17.4 −0.4 4.3
noPSP RMSE EFL Blackman 14 31 999 0 78 22 −0.1 6.0 1.3 4.8
PSP  RMSE EFL Blackman 16 28 999 0 82 23 −0.1 6.1 0.9 4.7
noPSP RMSE EFL beta 56 14 0.0 6.3 1.1 5.7
noPSP RMSE FLM bilinear 4 35 42 0.2 71 21 −4.5 13.9 0.1 3.4

IR323 noPSP Default bilinear 8 30 42 0.4 65 22 −5.7 18.4 0.3 5.1
noPSP RMSE EFL Blackman 14 32 999 0 73 23 0.1 8.0 1.4 6.9
noPSP RMSE EFL beta 63 20 −0.1 7.4 1.4 6.9
noPSP RMSE FLM bilinear 8 28 42 0 70 22 −6.5 19.8 0.2 4.9

ITA344 noPSP Default bilinear 8 30 42 0.4 77 19 −6.3 17.6 0.4 5.3
no  PSP RMSE EFL Blackman 18 26 999 0 95 22 0.4 6.2 2.1 7.0
no  PSP RMSE EFL beta 83 20 0.6 5.6 1.3 7.2
no  PSP RMSE FLM Bilinear 8 29 42 −0.2 85 19 −6.7 18.1 0.3 5.1

Sahel108 noPSP Default Bilinear 8 30 42 0.4 63 22 −5.4 17.9 −0.2 4.2
no  PSP RMSE EFL Blackman 15 34 999 0.4 60 21 0.6 7.3 2.0 6.2
no  PSP RMSE EFL Beta 62 17 0.0 9.5 0.7 10.5
no  PSP RMSE FLM Bilinear 1 36 42 −0.2 74 23 −4.0 14.3 0.2 3.3

WAS161 noPSP Default Bilinear 8 30 42 0.4 68 20 −6.1 18.0 0.0 4.1
no  PSP RMSE EFL Blackman 16 30 999 0 77 22 0.3 6.2 1.0 5.5
no  PSP RMSE EFL Beta 64 18 0.1 5.5 0.9 5.3
no  PSP RMSE FLM Bilinear 9 34 42 0.6 62 19 −4.3 14.2 0.2 3.8

is sufficiently large for calibrating phenological parameters. In
the SY and Senegalese datasets, the low TBD default was too
low, as a result of which simulated duration from emergence to
flowering was too short at temperatures around 24 ◦C (Fig. 3a). In
the SY and Senegalese datasets the default TMD was  too low as a
result of which simulated duration from emergence to flowering
was too long at temperatures above 30 ◦C (Fig. 3a).

In addition to answering the above four questions, we found it
interesting to note that:

1. Existing phenology calibration programs (Summerfield et al.,
1991, 1992; Collinson et al., 1992; Gao et al., 1992; Dingkuhn
et al., 1995; Dingkuhn and Miezan, 1995; Yin, 1996; Yin et al.,
1997b,c; Fukai, 1999) only minimised RMSE. We  found that min-
imising RMSE (Eq. (8)) also leads to correlation (temp × error)
converging to zero (bp in Eq. (10) converges to zero). In Table 3
this can be seen from comparing the “Error × TMEFL” and RMSE
values of the default and the optimised phenology. The fortunate

consequence is that these previous studies unintentionally also
eliminated correlation of phenology error with temperature.

2. Normally accuracy of a phenological model (+parameters) is
reported in one metric (the RMSE) and shown in graphs with
simulated duration on the y-axis and observed duration on the
x-axis (e.g., Matthews et al., 1995; Mall and Aggarwal, 2002; Yao
et al., 2007). Such a way of reporting conveys no information on
the temperature range in which phenology was calibrated and
conveys no information on the relation between error and tem-
perature. We  recommend plotting the observed and simulated
duration of phase p on the y-axis versus average temperature
during phase p on the x-axis, as in Figs. 2 and 3a,b. Such figures
provide information on the temperature range used for calibra-
tion and the accuracies at different temperatures.

3. Using this method to plot observed duration from flowering
to maturity (Fig. 4) against mean temperature from flowering
to maturity showed that this phase is much less responsive to
temperature than the pre-flowering phase. We  only found a sig-
nificant relation between duration and temperature of this phase
for cultivar SY. For the other cultivars almost the same accuracy
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Fig. 4. Observed duration from flowering to maturity versus mean temperature
during this period.

could be obtained simply by assuming the phase had a fixed
number of days (for clarity we show in Fig. 4 only IR64, the same
pattern was found for the other four Senegalse cultivars).

4. Our results consistently suggested that TBD during the post-
flowering phase is markedly lower than in the pre-flowering
phase (Table 3). This has also been shown for wheat (Wang and
Engel, 1998). A lower TBD in our models means that below TOD
(Fig. 1) the slope of the bilinear or Blackman model is less steep,
which means that TIt increases relatively little in case of a 1 ◦C
increase in temperature. This is in line with the above finding
that the duration of the post-flowering phase is less responsive
to temperature. The RIDEV model (Dingkuhn, 1995) uses a differ-
ent approach for simulating pre- and post-flowering phenology
of rice but from the paper it is not clear whether development
rate is equally or less responsive to temperature compared with
the pre-flowering phase. Models like ORYZA2000 and CERES-
Rice assume the same temperature parameters for the pre- and
the post-flowering phase. Our results and previous work by
Dingkuhn (1995) suggest that it may  be better to use different
temperature parameters for the pre- and post-flowering phases.
Our results and those of Dingkuhn (1995) further suggest that
the duration of the post-flowering phase is less variable among
cultivars. Additional analyses might show if there exists a set of
cultivar independent temperature response parameters for the
phase from flowering to maturity.

5. In some cultivars, our optimisations resulted in very high val-
ues of TBD in the pre-flowering phase: ITA344: 18 ◦C, WAS161:
16 ◦C and Sahel 108: 15 ◦C (Table 3). We  cannot tell from our
calibration data what the shape of the response function looks
like around 15–18 ◦C because temperature was never that low
for a prolonged time in the Senegal experiments. What we  do
know is that within the range of temperatures in our experi-
ments (24.2–31.4 ◦C, Table 1), development could accurately be
modelled with these TBD values.

6. The effect of transplanting shock remains difficult to quantify. In
most cultivars there was no clear convergence to a transplanting
shock parameter greater than zero. In all cultivars there was a
very flat response surface, i.e. almost the same accuracy could be
obtained with values for SHCKD in the range of −0.2 to 0.6. For
IR64, IR323, ITA344 and WAS161 we found SHCKD = 0, for the
Brazilian cultivars there was no transplanting, for SY we found
SHCKD values from −0.2 to 0.8 depending on whether or not
photoperiod sensitivity was assumed (an example of possible
cancelling out of effects of different parameters). For Sahel 108
SHCKD converged to 0.4, in QG SHCKD converged to 0.6. The
results imply that in terms of predictive power, there is little or

no value in including a transplanting shock parameter in a rice
phenology model.

4. Conclusions

The use of existing default values for phenological parameters
can lead to correlation between phenological error and tem-
perature. Phenological parameters that give seemingly accurate
predictions under current temperatures can be unexpectedly less
accurate under higher or lower temperatures. This is relevant when
using crop growth models for exploring potential for adaptation
or intensification of cropping systems (e.g., double cropping) and
in scenario development for climate change impacts. For prag-
matic reasons model users often use the same default values for
base, optimum and maximum temperature parameters and only
estimate the temperature sum as a cultivar specific parameter.
Major crop simulation models such as ORYZA2000 and CERES-Rice
lack a tailor made phenology calibration program that allows for
simultaneously calibrating all phenological parameters. We  have
developed such a new phenology calibration program consistent
with ORYZA2000 code and concepts. Applied to nine large datasets
(>20 treatments per dataset) from across the globe we have shown
that the use of ORYZA2000’s default base, optimum and maximum
temperature parameter can lead to systematic phenology error
(estimated number of days from emergence to flowering) at high
and low temperatures. It became clear that to calibrate phenology
it is necessary to simultaneously estimate all phenological parame-
ters and not just the temperature sum. Assumptions on the shape of
the response function above the optimum temperature led to very
different simulated durations of development phases. We  therefore
caution against using untested models for climate change scenar-
ios, when not calibrated in the range of temperatures considered in
the climate change scenarios. This could lead to highly erroneous
conclusions.
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